CNN-SVM for Microvascular Morphological Type Recognition with Data Augmentation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CNN-SVM for Microvascular Morphological Type Recognition with Data Augmentation

This paper focuses on the problem of feature extraction and the classification of microvascular morphological types to aid esophageal cancer detection. We present a patch-based system with a hybrid SVM model with data augmentation for intraepithelial papillary capillary loop recognition. A greedy patch-generating algorithm and a specialized CNN named NBI-Net are designed to extract hierarchical...

متن کامل

Deep CNN Ensemble with Data Augmentation for Object Detection

We report on the methods used in our recent DeepEnsembleCoco submission to the PASCAL VOC 2012 challenge, which achieves state-of-theart performance on the object detection task. Our method is a variant of the R-CNN model proposed by Girshick et al. [4] with two key improvements to training and evaluation. First, our method constructs an ensemble of deep CNN models with different architectures ...

متن کامل

Data Augmentation for Morphological Reinflection

This paper presents the submission of the Linguistics Department of the University of Colorado at Boulder for the 2017 CoNLL-SIGMORPHON Shared Task on Universal Morphological Reinflection. The system is implemented as an RNN Encoder-Decoder. It is specifically geared toward a low-resource setting. To this end, it employs data augmentation for counteracting overfitting and a copy symbol for proc...

متن کامل

Anatomical Data Augmentation For CNN based Pixel-wise Classification

In this work we propose a method for anatomical data augmentation that is based on using slices of computed tomography (CT) examinations that are adjacent to labeled slices as another resource of labeled data for training the network. The extended labeled data is used to train a U-net network for a pixel-wise classification into different hepatic lesions and normal liver tissues. Our dataset co...

متن کامل

Fast Parallel SVM using Data Augmentation

As one of the most popular classifiers, linear SVMs still have challenges in dealing with very large-scale problems, even though linear or sub-linear algorithms have been developed recently on single machines. Parallel computing methods have been developed for learning large-scale SVMs. However, existing methods rely on solving local sub-optimization problems. In this paper, we develop a novel ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Medical and Biological Engineering

سال: 2016

ISSN: 1609-0985,2199-4757

DOI: 10.1007/s40846-016-0182-4